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ABSTRACT 

The hGPR119 agonistic activity of triazolopyridines has been analysed with topological and 

molecular features with DRAGON software. Analysis of the structural features in conjunction with 

the biological endpoints in combinatorial protocol in multiple linear regression (CP-MLR) led to 

the identification of 10 descriptors for modelling the activity. The study clearly suggested the role 

of path/walk 5-Randic shape index (PW5), mean information vertex degree equality (IVDE), 

Lovasz-Pelikan index (LP1), atomic properties (mass, van der Waals volume and Sanderson 

electronegativities) in terms of weighted 2D-autocorrelations (MATS4m, MATS2e, MATS4e and 

MATS5e) and modified Burden eigenvalues (BELm7 and BEHv8) and total primary sp3 

hybridized carbon atoms (nCp) in a molecular structure to optimize the hGPR119 agonistic 

activities of titled compounds. Applicability domain analysis revealed that the suggested model 

matches the high quality parameters with good fitting power and the capability of assessing 

external data and all of the compounds was within the applicability domain of the proposed model 

and were evaluated correctly.  

Keywords: QSAR; hGPR119 agonistic activity; Combinatorial protocol in multiple linear 

regression (CP-MLR) analysis; Dragon descriptors; Triazolopyridine derivatives.  
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INTRODUCTION 

More than 400 million people worldwide are adversely affected with diabetes and it is supposed 

that this total will reach to 642 million by 2040 1. Type 2 diabetes mellitus (T2DM) is the most 

common form of diabetes which is a metabolic disorder and is characterized by hyperglycemia. 

Impaired insulin secretion and insulin resistance causes hyperglycemia which in long-term 

increases risk of micro- and macro-vascular complications that may cause blindness, renal failure, 

diabetic foot disorders, heart attacks and strokes. Multiple oral antidiabetic agents like 

sulfonylureas, meglitinides, biguanides, thiazolidinediones, β-glucosidase inhibitors and 

dipeptidyl-peptidase-4 (DPP-4) inhibitors have been used to cure T2DM but many patients failed 

to achieve glycemic control at desired level 2,3. The glucose-lowering effect of sodium-dependent 

glucose co-transporter 2 (SGLT2) inhibitor is devoid of hypoglycemia or weight gain. The need 

to develop new antidiabetic agents with greater safety and efficacy still exist. 

GPR119, a G-protein coupled receptor (GPCR), is expressed predominantly in the pancreatic β-

cells and gastrointestinal L-cells. The identified endogenous agonists for the GPR119 receptor are 

oleoyl-lysophosphatidylcholine and oleoylethanolamide (OEA) 4,5. Glucose-dependent insulin 

secretion from pancreatic β-cells increases due to increased cellular cAMP levels on activation of 

the GPR119 receptor 6. Release of incretins like glucagon-like peptide 1 (GLP-1) and glucose-

dependent insulinotropic polypeptide (GIP), from enteroendocrine cells are the results of the 

activation of the GPR119 receptor in the gut 7 -cells 

in a glucose-dependent manner by GLP-1 and GIP protects β-cells against apoptosis 8,9. The 

glucose-dependent dual mechanism of action of GPR119 agonists may improve glycemic control 

without inducing hypoglycemia.  

The investigations of several research groups 10,11 on multiple small-molecule GPR119 agonists 

led to the development of clinical compounds which include APD668 12, GSK1292263 13 and 

MBX-2982 14. Poor aqueous solubility of agonists causes low bioavailability, produces erratic 

assay results in in vitro studies and carries a high risk of not advancing due to potential toxicity 

which may not be recognized during preclinical studies 15,16. As an attempt to improve aqueous 

solubility of GPR119 agonist a novel series of triazolopyridine derivatives have been reported by 

Matsuda et al. 17. These derivatives are based on 3H-[1,2,3]triazolo[4,5-c]pyridine scaffold and 

having variations at central spacer, left-hand aryl group and right-hand piperidine N-capping 

group. The present communication is aimed at to establish the quantitative relationships between 

the reported activities and descriptors unfolding the substitutional changes in titled molecules. 
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MATERIALS AND METHOD 

Biological actions and theoretical molecular descriptors 

The reported twenty eight derivatives of triazolopyridine the data set for present study 17. These 

derivatives were evaluated for their agonistic activity against human GPR119 overexpressed in 

Flp-In-T-Rex-HEK293 cells by measuring changes in the cellular cAMP levels and were reported 

as EC50. The reported activity on molar basis (as pEC50) along with the structural variations of 

these analogues is shown in Table 1. The data set was sub-divided into training set to develop 

models and test set to validate the models externally. The test set compounds which were selected 

using an in-house written randomization program, are also mentioned in Table 1. 

Table 1: Structural variations and reported hGPR119 agonistic activities of triazolopyridine 

derivatives.   
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aEC50 (the concentration of the test compound required to achieve 50% of the maximal response) 

on molar basis, taken from reference 17; bCompound included in test set; *4-Methyl substituted 

indazole.  

The structures of the all the data set compounds of Table 1, drawn in 2D ChemDraw 18, were 

subjected to energy minimization in the MOPAC using the AM1 procedure for closed shell system 

after converting these into 3D modules. The energy minimization was carried out to attain a well 

defined conformer relationship among the congeners under study. Descriptors, belonging to 0D-, 

1D- and 2D-classes, of titled compounds were computed using DRAGON software 19. This 

software offers a large number of descriptors corresponding to ten different classes of 0D- to 2D-

descriptor modules which include the constitutional, topological, molecular walk counts, modified 

Burden eigenvalues, Galvez topological charge indices, 2D-autocorrelations, functional groups, 

atom-centered fragments, empirical descriptors and the properties describing descriptors. 

Characteristic structural information specific to the descriptor class is offered by these descriptors. 

The definition and scope of these descriptor’s classes is given in Table 2. 
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Table 2: Descriptor classes used for modeling the hGPR119 agonistic activity of 

triazolopyridines.  

S. No.  Descriptor Class 

(Acronyms)a 

Definition and Scope 

1 Constitutional (CONST) 

 

Dimensionless or 0D descriptors; independent from 

molecular connectivity and conformations 

2 Topological (TOPO) 

 

2D-descriptor from molecular graphs and independent 

conformations 

3 Molecular walk counts 

(MWC) 

2D-descriptors representing self-returning walk counts 

of different lengths 

4 Modified Burden 

eigenvalues (BCUT)  

 

2D-descriptors representing positive and negative 

eigenvalues of the adjacency matrix, weights of the 

diagonal elements and atoms 

5 Galvez topological charge 

indices (GALVEZ)  

2D-descriptors representing the first 10 eigenvalues of 

corrected adjacency matrix 

6 2D-autocorrelatons  

(2D-AUTO)  

 

 

Molecular descriptors calculated from the molecular 

graphs by summing the products of atom weights 

of the terminal atoms of all the paths of the considered 

path length (the lag) 

7 Functional groups (FUN)  

 

Molecular descriptors based on the counting of the 

chemical functional groups 

8 Atom centered fragments 

(ACF)  

Molecular descriptors based on the counting of 120 

atom centered fragments, as defined by Ghose-Crippen 

9 Empirical (EMP) 

 

 

1D-descriptors represent the counts of nonsingle bonds, 

hydrophilic groups and ratio of the number of aromatic 

bonds and total bonds in an H-depleted molecule 

10 Properties (PROP)  1D-descriptors representing molecular properties of a 

molecule 
a Reference 19. 

A total number of 492 descriptors, belonging to 0D- to 2D- modules, computed by Dragon 

software have been utilized to obtain most appropriate models describing the biological activity. 

The descriptors pool has been reduced by eliminating those descriptors which are inter-correlated 

beyond 0.90 (descriptor versus descriptor, r > 0.9) and showing a correlation of less than 0.1 with 

the biological endpoints (descriptor versus activity, r < 0.1), prior to model development 

procedure. In this way, 99 descriptors appeared as significant ones to explain the biological actions 

of titled compounds. 

Development and validation of model 

QSAR models have been developed, in the present study, using a “filter”-based variable selection 

procedure namely the combinatorial protocol in multiple linear regression (CP-MLR) 20-24. This 

procedure employs a combinatorial strategy with MLR to result in selected subset regressions to 

pull out the diverse structure–activity models and each derived model has unique combination of 

descriptors from the generated dataset of the compounds under study. The embedded filters make 
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the variable selection process efficient and lead to unique solution. The fear of existence of “chance 

correlations” in using large descriptor pools for multilinear QSAR/QSPR studies 25,26 overcome 

by randomization test 27,28 in which each cross-validated CP-MLR recognized model has been 

subjected to repeated randomization (100 simulation runs) of the biological responses. The datasets 

with randomized response vector have been reassessed by multiple regression analysis. The 

resulting regression equations, if any, with correlation coefficients better than or equal to the one 

corresponding to unscrambled response data were counted. This has been used as a measure to 

express the percent chance correlation of the model under scrutiny. 

Validation of the derived model is necessary to test its prediction and generalization within the 

study domain. A number of statistical parameters such as r (the multiple correlation coefficient), s 

(the standard deviation), F (the F ratio between the variances of calculated and observed activities), 

and Q2
LOO (the cross-validated index from leave-one-out procedure) have been obtained to access 

its overall statistical significance, for each model derived in n data points. In case of internal 

validation, Q2
LOO is used as a criterion of both robustness and predictive ability of the model. A 

value greater than 0.5 of Q2 index suggests a statistically significant model. The predictive power 

of derived model is based on test set compounds. The model obtained from training set has a 

reliable predictive power if the value of the r2
Test (the squared correlation coefficient between the 

observed and predicted values of compounds from test set) is greater than 0.5. Additional statistical 

parameters such as, the Akaike’s information criterion, AIC 29,30, the Kubinyi function, FIT 31,32 

and the Friedman’s lack of fit, LOF 33, have also been calculated to further validate the derived 

models. The AIC takes into account the statistical goodness of fit and the number of parameters 

that have to be estimated to achieve that degree of fit. The FIT, closely related to the F-value, 

proved to be a useful parameter for assessing the quality of the models. A model which is derived 

in k independent descriptors, its F-value will be more sensitive if k is small while it becomes less 

sensitive if k is large. The FIT, on the other hand, will be less sensitive if k is small whereas it 

becomes more sensitive if k is large. The model that produces the lowest AIC value and highest 

FIT value is considered potentially the most useful and the best. The LOF factor takes into account 

the number of terms used in the equation and is not biased, as are other indicators, toward large 

number of parameters. 

Applicability domain 

The usefulness of a model is based on its accurate prediction ability for new congeners. A model 

is valid only within its training domain and new compounds must be assessed as belonging to the 

domain before the model is applied. The applicability domain (AD) is evaluated by the leverage 
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values for each compound 34. A Williams plot (the plot of standardized residuals versus leverage 

values (h)) is constructed, which can be used for a simple graphical detection of both the response 

outliers (Y outliers) and structurally influential chemicals (X outliers) in the model. In this plot, the 

AD is established inside a squared area within ±x standard deviations and a leverage threshold h*, 

which is generally fixed at 3(k + 1)/n (n is the number of training set compounds and k is the 

number of model parameters), whereas x = 2 or 3. If the compounds have a high leverage value (h 

> h*), then the prediction is not trustworthy. On the other hand, when the leverage value of a 

compound is lower than the threshold value, the probability of accordance between predicted and 

observed values is as high as that for the training set compounds. 

RESULTS AND DISCUSSION 

QSAR results 

A derived model equation(s), using a pool of descriptors of different descriptor classes, provides 

an opportunity to unravel the phenomenon under study i.e. the concepts embedded in the descriptor 

classes relate the biological actions revealed by the compounds. For the purpose of modeling study, 

07 (one fourth of total active) compounds have been included in the test set for the validation of 

the models derived from remaining 21 training set compounds. A total number of 99 relevant 

descriptors from 0D- to 2D- classes, which were obtained after the reduction of descriptor data set, 

have been subjected to CP-MLR analysis with default “filters” set in it. Statistical models in three 

descriptors have been explored to achieve the best relationship correlating hGPR119 agonistic 

activity. All the models obtained in three descriptors were having the r2
Test value less than 0.5. 

Considering the number of observation in the dataset, models with up to four descriptors were 

explored. It has resulted in 04 models with test set r2 > 0.50. These models (with 99 descriptors) 

were identified in CP-MLR by successively incrementing the filter-3 with increasing number of 

descriptors (per equation). For this, the optimum r-bar value of the preceding level model (=0.814, 

r-bar value of the three parameter model having highest r2
Test) has been used as the new threshold 

of filter-3 for the next generation. These models have shared 10 descriptors among them. All these 

shared descriptors along with their brief meaning, average regression coefficients, and total 

incidence are listed in Table 3, which will serve as a measure of their estimate across these models. 
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Table 3. Identified descriptorsa along with their class, average regression coefficient and 

incidenceb, in modeling the hGPR119 agonistic activities of triazolopyridines. 

Descriptor class, average regression coefficient  and (incidence) 

Topological descriptors 

(TOPO): 

PW5, 2.374(3); IVDE, 1.128(2); LP1, 

-2.367(4)  

Modified Burden Eigen values 

(BCUT): 

BELm7, 0.980(1); BEHv8, -0.539(1) 

2D autocorrelations 

(2D-AUTO): 

MATS4m, 1.430(1); MATS2e, -

0.722(1); MATS4e, 0.983 (1); 

MATS5e, 1.223(1) 

Functional group counts  

(FUNC): 

nCp, -0.412(1) 

aThe descriptors are identified from the four parameter models for PPARγ binding activity 

transactivation activity emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 2.0, filter-

3 as 0.814 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 20 compounds. bThe average regression 

coefficient of the descriptor corresponding to all models and the total number of its incidence. The 

arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the 

models. TOPO: PW5, path/walk 5-Randic shape index; IVDE, mean information vertex degree 

equality; LP1; Lovasz-Pelikan index (leading eigenvalue); BCUT: BELm7, lowest eigenvalue n.7 

of Burden matrix/weighted by atomic masses; BELm8, lowest eigenvalue n.8 of Burden 

matrix/weighted by atomic masses; BEHv8, highest eigenvalue n.8 of Burden matrix/weighted by 

van der Waals  volumes; 2D-AUTO: MATS4m, Moran autocorrelation of lag-4/ weighted by 

atomic masses; MATS2e, Moran autocorrelation of lag-2/ weighted by atomic Sanderson 

electronegativities; MATS4e, Moran autocorrelation of lag-4/ weighted by atomic Sanderson 

electronegativities; MATS5e, Moran autocorrelation of lag-5/ weighted by atomic Sanderson 

electronegativities; FUNC: nCp, number of total primary C(sp3).  

The models in four descriptors emerged through CP-MLR are mentioned below.  

pEC50 = 6.436 + 2.274(0.444)PW5 – 1.967(0.305)LP1 + 1.430(0.464)MATS4m  

             – 0.721(0.266)MATS2e   

n = 21, r = 0.899, s = 0.297, F = 16.833, Q2
LOO = 0.513, Q2

L5O = 0.591 

r2
Test = 0.532, FIT = 1.819, LOF = 0.175, AIC = 0.143             (1) 

pEC50 = 6.587 + 2.349(0.536)PW5 + 0.916(0.454)IVDE – 2.424(0.424)LP1  

            – 0.539(0.238)BEHv8 

n = 21, r = 0.885, s = 0.315, F = 14.465, Q2
LOO = 0.545, Q2

L5O = 0.557 

r2
Test = 0.661, FIT = 1.563, LOF = 0.198, AIC = 0.161             (2) 

pEC50 = 6.865 – 2.308(0.323)LP1 + 0.980(0.365)BELm7 + 0.983(0.248)MATS4e  
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          + 1.223(0.390) MATS5e  

n = 21, r = 0.883, s = 0.317, F = 14.207, Q2
LOO = 0.534, Q2

L5O = 0.528 

r2
Test = 0.579, FIT = 1.535, LOF = 0.200, AIC = 0.164             (3) 

pEC50 = 6.474 + 2.500(0.556)PW5 + 1.340(0.474)IVDE – 2.770(0.409)LP1  

           – 0.412(0.203)nCp 

n = 21, r = 0.879, s = 0.323, F = 13.596, Q2
LOO = 0.562, Q2

L5O = 0.598 

r2
Test = 0.522, FIT = 1.469, LOF = 0.207, AIC = 0.169            (4) 

Where n, r, s and F represent respectively the number of data points,  the multiple correlation 

coefficient, the standard deviation and the F-ratio between the variances of calculated and observed 

activities. In above and all follow-up regression equations, the values given in the parentheses are 

the standard errors of the regression coefficients. The signs of the regression coefficients suggest 

the direction of influence of explanatory variables in the models. The positive regression 

coefficient associated to a descriptor will augment the activity profile of a compound while the 

negative coefficient will cause detrimental effect to it. In the randomization study (100 simulations 

per model), none of the identified models has shown any chance correlation. 

The participated descriptors, PW5, IVDE and LP1, in above models belong to topological class.   

It is apparent from the above mentioned equations that a higher value of path/walk 5-Randic shape 

index (PW5), and mean information vertex degree equality (IVDE) and a lower value of Lovasz-

Pelikan index (LP1) would be helpful to elevate the agonistic activity. Modified Burden eigenvalue 

(BCUT) class descriptors BELm7 (lowest eigenvalue n.7 of Burden matrix/weighted by atomic 

masses) and BEHv8 (highest eigenvalue n.8 of Burden matrix/weighted by van der Waals 

volumes) have shown positive and negative contribution, respectively, to the activity suggesting a 

higher value of BELm7 and a lower value of BEHv8 beneficiary to the activity. Except MATS2e, 

all the participated 2D-autocoorelation descriptors namely MATS4m, MATS4e and MATS5e 

contributed positively to the activity. Thus it may be inferred that a lower value of MATS2e 

(Moran autocorrelation of lag-2/weighted by atomic Sanderson electronegativities) and higher 

values of MATS4m (Moran autocorrelation of lag-4/weighted by atomic masses), MATS4e 

(Moran autocorrelation of lag-4/weighted by atomic Sanderson electronegativities) and MATS5e 

(Moran autocorrelation of lag-5/weighted by atomic Sanderson electronegativities) would be 

helpful for better activity. Additionally, presence of higher number of total sp3 hybridized carbon 

atoms in a molecular structure (nCp, functional group class descriptor) would be detrimental to 

the activity.  
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Nearly 81% variance in the observed activity has been accounted by these models. None of the 

CP-MLR identified model has shown any chance correlation in the randomization study (100 

simulations per model). The values of Q2 index, greater than a specified cutoff (0.5), hint that 

derived models are reasonable robust QSAR models. The pEC50 values of training set compounds 

calculated using Eqs. (1) to (4) and predicted from LOO procedure have been included in Table 4.  

Table 4: Observed and modeled hGPR119 activity of triazolopyridines. 

S. 

No. 

  pEC50(M)a   

Obsdb Eq. (1) Eq. (2) Eq. (3) Eq. (4) 

Calc Predc Calc Predc Calc Predc Calc Predc 

1 7.89 7.95 7.96 7.86 7.86 7.89 7.89 7.90 7.90 

2 7.85 7.82 7.82 7.86 7.87 7.92 7.93 7.90 7.91 

3d 7.15 6.72 -d 7.02 -d 6.79 -d 6.81 -d 

4 5.47 5.67 6.18 5.71 6.22 5.91 6.44 5.70 6.19 

5d 7.51 7.82 -d 7.86 -d 7.73 -d 7.90 -d 

6 7.68 7.96 8.00 7.86 7.90 7.80 7.82 7.90 7.94 

7d 8.15 8.16 -d 8.02 -d 8.10 -d 8.14 -d 

8 8.05 7.80 7.77 7.80 7.76 8.30 8.38 7.92 7.90 

9d 7.82 8.04 -d 7.88 -d 7.91 -d 7.81 -d 

10 8.7 8.23 8.03 8.09 7.91 8.33 8.04 8.07 7.89 

11 8.00 7.68 7.61 7.49 7.40 7.80 7.76 7.42 7.35 

12 7.72 7.64 7.62 7.63 7.61 7.51 7.48 7.60 7.57 

13 7.89 7.97 7.98 7.88 7.88 7.55 7.51 7.81 7.79 

14 7.22 6.90 6.59 7.00 6.95 6.59 6.39 7.19 7.19 

15 7.74 7.83 7.85 7.87 7.90 7.52 7.46 7.83 7.85 

16 7.74 8.11 8.16 8.07 8.15 7.95 7.98 8.03 8.09 

17 7.41 7.56 7.72 7.85 7.97 7.73 7.90 8.09 8.35 

18 7.08 7.09 7.10 7.02 6.99 7.18 7.22 7.07 7.07 

19 7.57 7.37 7.31 7.40 7.28 7.53 7.51 7.53 7.51 

20d 7.38 7.19 -d 7.70 -d 7.39 -d 7.69 -d 

21d 7.70 7.68 -d 7.73 -d 7.55 -d 7.62 -d 

22d 7.96 7.93 -d 7.97 -d 7.62 -d 7.97 -d 

23 7.64 7.26 6.69 7.43 6.98 7.85 7.96 7.52 7.30 

24 8.00 7.69 7.66 7.97 7.97 7.70 7.65 7.85 7.82 

25 7.43 7.71 7.74 7.97 8.12 7.45 7.46 7.85 7.96 

26 7.48 7.80 7.88 7.68 7.72 7.57 7.61 7.36 7.31 

27 7.21 7.36 7.37 7.26 7.27 7.19 7.19 7.22 7.22 

28 7.19 7.57 7.65 7.24 7.25 7.70 7.77 7.20 7.20 

aOn molar basis; bTaken from ref. 17; cLeave-one-out (LOO) procedure; dCompound included in 

test set.  

The models (1) to (4) are validated with an external test set of 7 compounds mentioned in Table 

1. The test set r2 (r2
Test) values greater than 0.5 of these models reflect that these models have 

satisfactory external validation capability. The predicted activity values of test set compounds are 

in tune to the observed ones and the same is mentioned in Table 4. The plot showing goodness of 
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fit between observed and calculated activities for the training and test set compounds is given in 

Figure 1. 

    

   

Figure 1: plot of observed and calculated pEC50 values of training- and test-set compounds 

for hGPR119 agonistic activity of triazolopyridines.   

Applicability domain (AD) 

On analyzing the model AD in the Williams plot, shown in Figure 2, of the model based on the 

whole dataset (Table 5), it has appeared that none of the compounds were identified as an obvious 

outlier for the hGPR119 activity of triazolopyridines if the limit of normal values for the Y outliers 

(response outliers) was set as 3 (standard deviation) units. One compound listed in Table 1 at S. 

No. 4 found to have leverage (h) values greater than the threshold leverage (h*) suggesting this 

training set compound as chemically influential compound. For both the training-set and test-set, 

the suggested model matches the high quality parameters with good fitting power and the 

capability of assessing external data. Furthermore, all of the compounds were within the 

applicability domain of the proposed model and were evaluated correctly. 
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Table 5: Models derived for the whole data set (n = 28) for the hGPR119 agonistic activity in 

descriptors identified through CP-MLR.  

Model r s F Q2
LOO Eq. 

pEC50 = 6.525 + 2.074(0.353)PW5 – 1.783(0.254)LP1 

+ 1.362(0.349)MATS4m – 0.685(0.223)MATS2e   

0.887 0.273 21.332 0.610 (1a) 

pEC50 =6.391 + 2.536(0.444)PW5 + 1.032(0.337)IVDE 

– 2.370(0.329)LP1 – 0.559(0.199)BEHv8 

0.882 0.279 20.182 0.634 (2a) 

pEC50=6.956– 2.210(0.270)LP1 + 0.895(0.262)BELm7 

+ 0.924(0.204)MATS4e + 1.140(0.263)MATS5e  

0.874 0.288 18.632 0.584 (3a) 

pEC50= 6.326 + 2.595(0.468)PW5 + 1.418(0.371)IVDE 

– 2.650(0.332)LP1 – 0.380(0.169)nCp 

0.869 0.293 17.803 0.590 (4a) 

    

    

Figure 2. Williams plot for the training-set and test- set compounds for hGPR119 agonistic 

activity. The horizontal dotted line refers to the residual limit (±3×standard deviation) and 

the vertical dotted line represents threshold leverage h* (= 0.540).   

CONCLUSION 

QSAR study has been carried out on the hGPR119 agonistic activity of triazolopyridines in 0D- to 

2D-Dragon descriptors. The descriptors identified in CP-MLR analysis have highlighted the role 

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
es

id
u

a
ls

 (
E

q
. 

1
a

)

Leverages

Training set; Test set

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
es

id
u

a
ls

 (
E

q
. 

2
a

)

Leverages

Training set; Test set

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
es

id
u

a
ls

 (
E

q
. 

3
a

)

Leverages

Training set; Test set

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
es

id
u

a
ls

 (
E

q
. 

4
a

)

Leverages

Training set; Test set

http://www.ajphr.com/


Sharma et al., Am. J. Pharm Health Res 2020;8(08)     ISSN: 2321-3647 

www.ajphr.com  14 
 

of molecular topology accounting features path/walk 5-Randic shape index (PW5), mean 

information vertex degree equality (IVDE), Lovasz-Pelikan index (LP1) in addition to atomic 

properties such as mass, van der Waals volume, and Sanderson electronegativity through weighted 

2D autocorrelations (MATS4m, MATS2e, MATS4e and MATS5e) and modified Burden 

eigenvalues (BELm7 and BEHv8).  Counts of total primary sp3 hybridized carbon atoms in a 

molecular structure (descriptor nCp) have also shown significance to optimize the hGPR119 

agonistic activity. Applicability domain analysis revealed that the suggested model matches the 

high quality parameters with good fitting power and the capability of assessing external data and 

all of the compounds was within the applicability domain of the proposed model and were 

evaluated correctly. 
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